
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2005; 47:1323–1328
Published online 7 January 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/�d.873

Generalized wall functions and their application for simulation
of turbulent �ows

S. V. Utyuzhnikov∗;†

Department of Power; Propulsion & Aerospace Engineering; School of Engineering; Cran�eld University;
Cran�eld; MK43 0AL; U.K.

SUMMARY

Generalized wall functions in application to high-Reynolds-number turbulence models are derived. The
wall functions are based on transfer of a boundary condition from a wall to some intermediate boundary
near the wall (usually the �rst nearest to a wall mesh point but that is not obligatory). The boundary
conditions on the intermediate boundary are of Robin-type and represented in a di�erential form. The
wall functions are obtained in an analytical easy-to-implement form, taking into account source terms
such as pressure gradient, and do not include free parameters. The log-pro�le assumption is not used in
this approach. Although the generalized wall functions are obtained for the k–� model, generalization to
other turbulence models is straightforward. The general approach suggested can be applied for studying
high-temperature regimes with variable laminar viscosity and density. Copyright ? 2005 John Wiley &
Sons, Ltd.

KEY WORDS: wall functions; turbulence; high-Reynolds-number model; k–� model

1. INTRODUCTION

The numerical simulation of the turbulent �ows near walls is required in many industrial
applications. It is well known that turbulence vanishes near a wall due to the no-slip boundary
condition for the velocity as well as the blocking e�ect caused by the wall. In the vicinity of
the wall, there is a thin sublayer with predominantly molecular di�usion. The sublayer has a
substantial in�uence upon the remaining part of the �ow. An adequate numerical resolution
of a solution in the sublayer requires a very �ne mesh because of the thinness of the sublayer
and high gradients of the solution. Calculations are time consuming and may be impractical
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for industrial applications. Because of the low-turbulent-Reynolds number in the sublayer,
models that resolve the sublayer are called low-Reynolds-number (LR) models.
To remove the computational burden, high-Reynolds-number models (HR) have been de-

veloped that do not require resolution of the sublayer. It signi�cantly saves computational
e�orts [1]. In the HR models, the boundary conditions or near-wall pro�les are represented
by wall functions. In most cases, the wall functions are semi-empirical and have very limited
applications [1–5]. The wall functions were originally based on the log-law pro�le for the
velocity [2, 3]. The main disadvantage of these wall functions is a strong dependence on the
location of the mesh point closest to the wall where the wall functions are applied. Such a
problem is especially pronounced if the �rst mesh point is located inside the viscous sublayer.
To avoid this, the scalable wall function approach is suggested in Reference [6]. Wilcox [7]
showed that the pressure gradient must be taken into account to avoid the mesh dependence.
In more recent approaches [1, 4, 5] attempts have been made to take into account the pressure
gradient and other e�ects such as buoyancy forces [1, 5]. Numerical comparisons presented
in References [1, 4, 5] showed that such advanced wall functions give substantially better
prediction than the standard wall functions. A brief review of wall functions can be found
in, e.g. Reference [1]. In Reference [5], analytical wall functions are obtained by integrating
boundary-layer-type equations in the vicinity of a wall using the assumption that all terms
besides the di�usive one are constant. At the wall, the boundary conditions are the same as
those used in the LR models. The analytical pro�les for the e�ective viscosity are then used
in the cell nearest to the wall to reconstruct the near-wall solution. The wall functions for
the turbulent kinetic energy and its dissipation are based on a local approximate analytical
solution for the velocity in the near-wall cell. Similar to the standard wall functions, this
approach faces substantial problems if the nearest cell to the wall is in the viscous sublayer.
Also, it is important to note that the second cell to the wall cannot be much smaller or bigger
than the �rst one because of the integration over the �rst cell.
In the following sections, the method of boundary condition transfer is used [8]. The method

allows us to transfer a boundary condition from a wall to some intermediate surface. It is
shown that it is possible to transfer a boundary condition either approximately (analytically)
or exactly (numerically). The boundary conditions on the intermediate surface are always of
Robin-type and represented in a di�erential form. They can take into account the in�uence
of the source terms in governing equations. These boundary conditions are interpreted as
generalized wall functions. The location of the point, to which the boundary conditions are
transferred, does not make any considerable e�ect on the mesh distribution nearby this point.
The wall functions can be easily implemented.
The general approach suggested is applicable to studying high-temperature turbulent �ows

with variable density and laminar viscosity.

2. MODEL EQUATION

First, let us consider the following model equation:

(�uy)y=Rh (1)

de�ned in a domain �= [0; ye] with Dirichlet boundary conditions

u(0)= u0; u(ye)= u1 (2)
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Equation (1) represents the general form of a boundary-layer-type equation. The right-hand
side Rh may contain the evaluation of source terms such as the pressure gradient, convective
term or buoyancy force [9]. In many problems the contribution of the convective term in the
wall function is not substantial and does not even exceed the error inevitable in its evaluation.
It is possible to transfer the boundary conditions from 0 to some point y∗ exactly [8]. Then,

the boundary condition becomes of Robin-type:

u(y∗)= u0 +f1
du
dy
(y∗)−

(∫ y∗

0
Rh dy

)
f2
y∗�∗

(3)

where

f1 =
∫ y∗

0

�(y∗)
�(y)

dy; f2 =
∫ y∗

0

�(y∗)
�(y)

(
1−

∫ y
0 Rh dy∫ y∗
0 Rh dy

)
dy (4)

Assuming that the coe�cient varies piecewise linearly

� =



�w if 06y6yv;

�w+(�∗ −�w) y−yv
y∗ −yv if yv6y6y∗

(5)

where index w means a value at y=0, it is possible to obtain analytical expressions for f1
and f2 if Rh=const and yv6y∗

f1 = ��yv(1+ � ln ��); f2 = ��yv[(1− �)y∗+yv(�2�� ln �� − 1=2 + �)] (6)

where ��=�∗=�w; �−1 = (�∗ −�w=�w)(yv=y∗ −yv).

3. GENERALIZED WALL FUNCTIONS

We apply the method of boundary condition transfer given above to derive the generalized
wall functions for the tangential velocity component U or temperature T , and the turbulent
kinetic energy k. Neglecting di�usion parallel to the wall, the appropriate transport equations
can be written in form (1). Thus, the same approach is applied to all of these variables
assuming that Rh is variable in the case of the turbulent kinetic energy k [9]. The boundary
condition for � is the same as in Reference [5]. The e�ective viscosity �e� =�l+�t can be
evaluated via piecewise linear function (5), where �l (corresponds to �w in (5)) is the laminar
viscosity and �t is the turbulent viscosity. The sublayer thickness yv can be calculated as in
Reference [5]:

yv=10:8�l=(�
√
k∗) (7)

The coe�cients f1 and f2 in the wall functions (3)–(6) depend on y∗ and k∗ only. The
latter value is determined from the solution of the HR model at the boundary point y∗. Hence,
the intermediate boundary conditions (3) at y=y∗ complete the boundary-value problem in
the interval [y∗; ye] (ye is the external boundary of the computational domain) and can be
considered as generalized wall functions. These boundary conditions are of Robin-type and
similar to the ‘slip boundary condition’ at the edge of the Knudsen-layer in aerodynamics.
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It is also important to note that boundary condition (3) is linear, therefore, it does not require
iterations for its resolution. As it follows from (3), the source term in the wall functions can
only be essential far enough from a wall because it is proportional to y∗ squared.
Upon obtaining a HR solution, it can be extended to the interval [yv; y∗] analytically [9].

It means that the intermediate boundary y∗ is not necessarily to be related to the nearest to
the wall cell. It is possible to take y∗ far enough from the wall and, then, complement the
solution on the region [yv; y∗].
The generalized wall functions obtained and their implementations are not based on a

numerical integration in the inner region [0; y∗], as in References [1, 4]; therefore, the location
of the intermediate boundary y∗ is not very substantial for the mesh distribution in the bulk
domain. It means we can choose, e.g. a �ne mesh despite a relatively big value y∗ (or vice
versa) without losing stability.

4. TEST CASE

A fully developed plane channel �ow has been considered as a test case. The �ow is simulated
far enough from the edge of the channel, so that the problem can be considered as 1D [10].
The standard HR k–� model has been used to test the wall function approach.
Here, y is the distance to the wall, px is the pressure gradient in the channel which is

assumed to be negative, and �=�=�.
In the computations given below the Reynolds number is Re= u�h=�=395, where

u�=
√− hpx=� is the friction velocity, h is half of the channel height. The dependence of

the dimensionless velocity, u+ =U=u�, on the universal coordinate, y+ =yu�=�, is calculated
using the approach developed in this work and compared against the benchmark results.
As it follows from Section 3, the generalized wall functions have only one free param-

eter which is the coordinate y∗ of the point to which the boundary conditions are moved.
In Figure 1 the velocity pro�les u+ obtained by the wall function approach are given against
y+∗ =yu�=� for di�erent values of y∗. The pro�les are compared against the Reichardt’s pro�le
[11] representing the benchmark solution.
A comparison between several di�erent kinds of wall functions is shown in Figure 2 for

y+∗ =100. The dashed line corresponds to the homogeneous boundary conditions where the
right-hand side Rh in (3) is not taken into account. In this case, f2 = 0 in (3). The error
is signi�cant. This con�rms the importance of taking into consideration the source terms in
the wall functions in the case of large values of y∗. If the source term is included in the
boundary conditions for the velocity only, the prediction becomes much more accurate (dash–
dotted line). At the same time, the replacement of the boundary condition (3) for the turbulent
kinetic energy k by a frequently used boundary condition gives a substantial deviation from
the benchmark solution (dotted line). The standard wall functions used for all variables [10]
result in much better prediction (dash–double-dotted line). Yet, one can note that the channel
�ow is one of the most convenient test cases for the standard wall functions. The current
approach gives more accurate predictions, as shown in Figure 1. The same conclusion was
obtained in the case of Re=3950. The main advantages of the wall functions developed
here are expected to be even more impressive when more complicated cases are considered.
The generalized wall-functions have been recently implemented for the impinging jet test
case [12, 13] and have given reasonably good results. Finally, it is important to emphasize
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Figure 1. Velocity pro�le in channel �ow. Solid line is Reichardt’s pro�le;
the other lines correspond to y+∗ =30; 50; 100; 200.
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Figure 2. Velocity pro�le in channel �ow with di�erent wall-functions. Solid line is
Reichardt’s pro�le; the other lines correspond to homogeneous wall-functions for U and k
(dashed line), and only for k (dashed–dotted line); ‘standard’ wall-function for k (dotted

line) and for all variables (dashed–double-dotted line).
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that in contrast to the standard wall functions the approach in question is not based on the
velocity-log-pro�le assumption or any similar additional information to match the solution.

5. CONCLUSION

Generalized wall functions have been developed. They are based on the transfer of boundary
conditions from a wall to some point in the computational domain (usually the nearest to the
wall grid point). The boundary conditions at this point are of Robin-type and represented in
a di�erential form. These boundary conditions are interpreted as generalized wall functions
taking into account source terms and used for HR models. The wall functions have been ob-
tained in a compact easy-to-implement analytical form and they do not include any adjustable
parameters. Testing this approach along with the k–� equations applied to a fully developed
turbulent �ow in a channel showed that the proposed wall functions are quite accurate even
if the boundary conditions are set at a point either in a viscous sublayer or far beyond. The
mesh distribution inside the computational domain can be chosen independent of the location
of the intermediate boundary.
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